Flushing out the role of GPR109A (HM74A) in the clinical efficacy of nicotinic acid.

نویسنده

  • Nicholas B Pike
چکیده

The recent discovery of the G(i) protein-coupled receptor GPR109A (HM74A in humans; PUMA-G in mice) as a receptor for nicotinic acid has provided the opportunity to gain greater understanding of the underlying biology contributing to the clinical efficacy (increases in HDL, decreases in VLDL, LDL, and triglycerides) and the characteristic side-effect profile of nicotinic acid. GPR109A has been proven to be the molecular target for the actions of nicotinic acid on adipose tissue, and in this issue of the JCI, Benyó et al. have confirmed the involvement of GPR109A in the nicotinic acid-induced flushing response, a common side effect. The involvement of GPR109A in both the desirable and undesirable clinical actions of nicotinic acid raises interesting questions regarding the function of this receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.

Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein-coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nic...

متن کامل

Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G).

The G-protein-coupled receptor GPR109A (HM74A/PUMA-G) has recently been shown to function as a receptor for nicotinic acid (niacin) and to mediate its antilipolytic effects. Nicotinic acid is able to strongly raise plasma levels of high-density lipoprotein cholesterol, a property that distinguishes nicotinic acid from other lipid-lowering drugs. To investigate the structural determinants of GPR...

متن کامل

Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice.

The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cutaneous flushing through activation of G protein-coupled receptor 109A (GPR109A). Flushing is a troublesome side effect of nicotinic acid, but may be a direct reflection of the wanted effects of monomethyl fumarate. Here we analyzed the mechanisms underlying GPR109A-mediated flushing and show that b...

متن کامل

Nicotinic acid receptor agonists differentially activate downstream effectors.

Nicotinic acid remains the most effective therapeutic agent for the treatment and prevention of atherosclerosis resulting from low high density lipoprotein cholesterol. The therapeutic actions of nicotinic acid are mediated by GPR109A, a Gi protein-coupled receptor, expressed primarily on adipocytes, Langerhans cells, and macrophage. Unfortunately, a severe, cutaneous flushing side effect limit...

متن کامل

Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells.

The antidyslipidemic drug nicotinic acid (niacin) has been used for decades. One of the major problems of the therapeutical use of nicotinic acid is a strong cutaneous vasodilation called flushing, which develops in almost every patient taking nicotinic acid. Nicotinic acid-induced flushing has been shown to be mediated by the nicotinic acid receptor GPR109A and to involve the formation of vaso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 115 12  شماره 

صفحات  -

تاریخ انتشار 2005